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Summary.  One hundred families of  average size 10 are 
allocated in single-tree plots to 20 blocks in several 
planned unbalanced designs. Based on the variance of  
the est imate of  her i tabi l i ty  from the Min imum Vari- 
ance Quadra t ic  Unbiased Estimates and 100% survival, 
the three part ial ly balanced designs are equally effi- 
cient. A design with var iable  family size is more effi- 
cient for her i tabi l i t ies  (h 2) generally less than 0.25; an 
equal family size design is more efficient for h 2 
generally greater  than 0.25. A design with a large 
number  of  small families is more efficient at high h 2 
than that with a small number  of  large families; a 
design with fewer families of  larger size is more effi- 
cient at low h 2. Two-tree plot designs are never more 
efficient than single-tree plot designs and are also 
shown to be sensitive to the magni tude  of  the variance 
components  that generate a given h 2, whereas the 
single-tree plot designs are not. 

Key words: Minimum Variance Quadra t ic  Unbiased 
Estimates - Design efficiency - Plot size - Variable 
family size - N u m b e r  of  families 

Introduction 

Perennial tree crops present several experimental  diffi- 
culties for the breeder  who is interested in estimating 
variance components  or functions of  them, such as 
heri tabil i ty.  Not only do experiments  consume large 
amounts  of  space, but  the seeds are often difficult or 
expensive to obta in  in rel iable  quantity. For  these 
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reasons, Shrikhande (1957) developed a method for 
estimating genetic variances in coconut plantat ions of  
randomly dispersed genotypes without using parental  
information; this method was further developed for 
forest trees by Sakai and Hatakeyama (1963). Usanis 
(1972) concluded that the model produced inaccurate 
estimates with low precision in situations where 
environmental gradients prevailed;  only random varia- 
tion is accounted for by Shrikhande 's  model. 

In this paper,  we address some of  the problems of  
space and variable family size in planted experiments.  
In particular,  we consider that appropr ia te ly  uniform 
test sites often exist only in small patches but  that a 
large number  of  families must be included in such 
tests. In fact,  one of  the obstacles to the conduct of  
genetic experiments in tree crops is .the large size of  
blocks needed for a randomized complete block design. 
The difficulties of  either finding reasonably uniform 
sites or of  including large site heterogenei ty within 
blocks reduce the utility of such experimental plantings. 
It is often far easier to find several small planting sites 
than one large site of  the same total area. In addi t ion to 
the problem of space, we also consider that seeds col- 
lected from individual  trees are often l imited in num- 
ber and may have germinat ion problems such that 
family sizes are small and variable. 

As a guide to the sizes of experiments which are useful 
with trees, we note in recent publications that around 50 
parent trees are used in rubber (Tan 1977), and Oil Palm 
(Obisesan and Fatunla 1983) with a total of 1,500 to 3,100 
individuals measured. Even though the number of families is 
small, this is roughly similar to forest tree experiments (Nam- 
koong 1979). Some typical experiments such as in Western 
White Pine (Hanover and Barnes 1962) include only 28 
families and 2,700 seedlings while some, as with Ponderosa 
Pine (Callaham and Duffield 1962), include 81 families and 
4,300 seedlings. Larger experiments such as one open-pol- 
linated study with Loblolly Pine with 280 families and 50 
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seedlings per family are usually too large to manage in com- 
plete block replications (Stonecypher 1966). Since the genetic 
variance estimate depends on the number of families in- 
cluded, it is desirable to include upwards of 100 families in 
these tests. It is also beneficial, for progeny testing, to include 
a large number of families when heritability anddominance 
variance are low (Pepper and Namkoong 1978). With the 
additional need to keep block size small, balanced designs will 
rarely be satisfactory to estimate variance components for tree 
experiments. Under such conditions, we require efficiency in 
use of materials as well as of space and the analytical 
procedures with unbalanced field designs (Namkoong 1981). 

As a paradigm, we choose an experimental situa- 
tion in  which it is possible to collect a few viable seeds 
from each of 100 sampled trees. We assume that an 
average of 10 seedlings per parent tree can be planted 
and that all 1,000 trees will survive to measurement  
age. For the distr ibution of family size, we assume that 
seed viability varies from 2/3 to 1/4 and appropriate 
numbers  of seed from 15 to 40, respectively, to generate 
binomial  distributions of offspring with mean family 
size of 10. We also choose an extremely small area for 
each planting site, as is appropriate for many tree 
crops. We consider that 1/10 hectare blocks are easy to 
find and to manage such that survival within a block is 
easily maintained.  We assume that each block can 
contain only 50 measurement  trees laid out as single- 
tree plots and, hence, for a total experiment size of 
1,000 trees, there are 20 such planting sites. These sites 
are random samples of the distr ibution within a site 
type. Our inferences from such a design will be limited 
to this site type. 

Since variance component estimators derived from 
Analysis of Variance are inefficient with unbalanced 
data (Swallow and Monahan 1984; Searle 1979), and 
provide min imum variance estimators only with bal- 
anced data, we prefer to use more efficient estimators. 
Many unbalanced design comparisons are made on the 
basis of various forms of modified Least Squares 
procedures such as those by Muse etal .  (1982) and 
others, as reviewed by Anderson (1981). For our 
analysis, we choose to use the Modified Maximum 
Likelihood (MML) procedure as detailed by Searle 
(1979) and programmed by Giesbrecht (1983). Esti- 
mates from this procedure are translation invariant, 
asymptotically normal  (Brown 1976), free of fixed 
effects and have m i n i m u m  variance in the locality of 
the true values. The MML estimates result from 
iterating the Min imum Norm Quadrat ic  Unbiased 
Estimates (MINQUE) of variance components. We 
compare efficiency ratios of three different incomplete 
block designs, and of family size distr ibution over the 
full range of heritability on the basis of the variance of 
a given heritability. The efficiency of designs is ex- 
pected to differ if evaluated with another comparison 
criterion, as shown by Muse and Anderson (1978). We 
also consider the efficiency of designs with fewer 

families of larger size and two-tree plots, which are 

possible alternatives in the 20-block situation if the 
constraints on family size and number ,  and use of 
single-tree plots are relaxed. Muse and Anderson com- 
pare parameter estimation from several planned un- 
balanced designs in which the numbers  of "blocks" and 
"families" are not constrained, as they have been here. 

M e t h o d o l o g y  

The model 

The following notation and computational methodology for 
Minimum Norm Quadratic Unbiased Estimates (MINQUE) 
are after Giesbrecht (1983), whose procedure for variance 
component estimation was written as a temporary SAS TM 

program entitled Procedure MIXMOD. 
The statistical model for each design considered is: 

Y = ~ I + U B eB + UF eF + Up ep + ew 
n •  n x l  n x b b x l  n x f  f x l  n x s s x l  n x l  

where Y is the column vector of observations;/z is the overall 
mean; U B, U F and U v are design matrices pertaining to the 
block, family and plot (with s block-by-family combinations) 
effects, respectively, with all elements equal to zero or one; for 
single-tree plots Up is the identity matrix; e a, e F, ep and e w 
are independent column vectors of independent random vari- 
ables, each with mean zero and variance-covariance matrix 
lb a2, If0 "2, I s 0 .2 and In a2w, respectively. The variance-covari- 
ance matrix of Y is: 

V(Y) = U BU[a 2 + U vU~a 2+ UpU~a 2+ I na 2 ,  

where a 2, a 2, a 2, and a2w are the variance components due to 
the block, family, plot and within plot error effects, respec- 
tively. Letting V i = U i U~, and for convenience Vw = In,.V(Y), 
based on the parameters, can be rewritten as: 

V :  = V(V) = Va o~ + V F o~ + Vp (72 + V w a:w. (t) 

When the variance components of (1) are unknown, 
MINQUE of them can be found as solutions to the equations: 

{tr (Q~ vi Q~ vj)} {5-~} = {Y'Q~ vi Q~ Y } i,j = B,F ,P ,W (2) 

where Q~=V~-l--V~-ll(l'V~-li)-ll'V~-I, V~ is V:  in (l) with 
the true values (a 2) replaced with prior values (ai), I is a nx 1 
vector and the symbol {ak} refers to a matrix whose elements 
are ak. Iteration of MINQUE (I-MINQUE) to convergence 
results in Modified Maximum Likelihood (also referred to as 
Restricted Maximum Likelihood (REML)) estimates, as- 
suming all the random elements are normally distributed and 
no negative estimates are encountered in the iteration process. 

If the variance components (a~) were known, then (2) 
with V o ~ of (1) replacing V a in Q a (now Q o ~) represents equa- 
tions for Minimum Variance Quadratic Unbiased Estimates 
(MIVQUE) (assuming normality). The variance-covariance 
matrix for the resulting estimates of the components 
(,4, o~, o~, o~v)' would be: 

2 {tr (Qo~ V i Qo, vj)}-' i, j = B, F, P, W. (3) 

The dispersion matrix (3) of the variance components is a 
function of the variance components themselves plus the 
design matrices (Ui). It is therefore possible to calculate this 
dispersion matrix for a given true set of variance component 
values and a design. 
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For the calculation of heritability (h2), we assume that the 
families are half-sibs and that  4 a  2 = a2A, where a~ is the 
additive genetic variance. Heritability is calculated as: 

h 2 = 4 @/(or2 + . 2 +  "~v) = X/Y .  

Using the variances and covariances from the dispersion 
matrix (3), we calculate the variance of heritability using a 
Taylor's series approximation for the variance of a ratio: 

var (t] 2) ~ var (X) ( l /Y)  2 -  2 cov (J~, Y) ( l /Y)  (X/Y 2) 

+ var (~) ( X / y 2 )  2 , 

where values X and Y are based on true values of variance 
components. Sets of variance components are evaluated for 
0 < h 2 =< 1 and standardized such that or2 = 1 which requires 
a 2 =< 1/3 for a 2 = 0. We examine two types of the plot error 
component (~r2): a~ = @ and a~ > @ = 0.005, each over the 
range of h e for a constant a~ = 2. These types of variance 
component sets are compared by an efficiency ratio (Et) which 
equals the var (ta ~) based on the variance component set type 
a~ > 62 divided by the var(l]  2) based on the variance com- 
ponent set type aFZ----ap~ for a given h ~. The variance of 
heritability is scale invariant such that  the results are generally 
applicable. Since ~ affects the variance of other variance 
components through its inclusion in (3), we examine its effect 

on the magnitude of var(fi z) at a 2 = 0.5, @ = 2 and cr~ = 4 by 
an efficiency ratio (El) equal to the var (h  2) based on a 2 = i 
divided by the var(la ~) based on a~ = 2, for i =  0.5, 4 and a 
given h 2. 

The field designs and family size distributions 

The unbalanced designs examined for allocating 1,000 trees to 
2,000 block-family combinations were chosen to fit the con- 
straints of 20 blocks with 50 trees per block and 100 families 
with an average of 10 trees per family. These designs then 
differ in the way families are allocated to blocks. 

The general forms of these design allocations are a 
parallel design, a diagonal design and a uniform design 
(Fig. 1). Upon rearranging the order of the families and the 
blocks, all of these allocations can be viewed as incomplete 
block designs with varying patterns of family commonality 
among blocks (Fig. 2). For the case of ten trees per family, the 
diagonal design is a series of 10-block by 10-family units with 
8 common blocks among "adjacent" units. The parallel design 
is a series of 10-block by 5-family units with 9 common blocks 
among "adjacent" units. The uniform design is a series of two 
10-block by 50-family units without any common blocks 
among the units, referred to by Gaylor and Anderson (1960) 
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Fig. 1. Schematic diagram of the diagonal, parallel and uni- 
form design allocations, where a shaded block-family com- 
bination indicates that a single tree from a given family is 
randomly allocated within a given block. Each of the 20 
blocks has 50 trees, the total number  of trees being 1,000. 
An uniformly ten trees per family distribution is illustrated 
here 
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Fig. 2. Schematic diagram of the diagonal, parallel and uni- 
form design allocations, with the order of families and/or  
blocks rearranged to show the commonality of the families 
among blocks. Each shaded block-family combination indi- 
cates that a single tree from a given family is randomly 
allocated within a given block. Each of the 20 blocks contains 
20 trees and n = 1,000. For this diagram, each family has 10 
trees 
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as a disjoint rectangles design. These patterns are complicated 
with the imposition of family size distribution. 

Five distributions were considered for family size: one 
with a uniform 10 trees per family (U (10)), and four binomial 
distribution (B(N,p)): B(15,2/3), B(20,1/2), B(30,1/3) and 
B (40, 1/4). For all distributions, the number of trees per plot 
is either zero or one, for a total of 1,000 filled cells. Since Cr2w 
is confounded with a~, only the sum ( ~  + a2w) rather than the 
individual components is estimable. For calculating var(t]2), 
only the variance of the sum is required. 

Given the same set of environmental effects with 20 
blocks, we can also consider the use of 50 families each with 
20 trees. In addition, we can compare the efficiency of using 
two-tree plots (TTP) designs with that of single-tree plots 
(STP) designs. For these comparisons we examine designs 
with single-tree and two-tree plots, when we carry 50 families 
with 20 trees per family, and when we carry 100 families with 
l0 trees per family. We assume a uniform family size 
distribution and choose the following designs to fill the four 
cells of this two-by-two comparison table: 

B.20.50.1 A Balanced design with 20 blocks, 50 families using 
single (1) tree plots. 

U.20.50.2 An Unbalanced diagonal design with 20 blocks, 
50 families using 2 tree plots. These are arranged as a series of 
balanced units having common blocks among "adjacent" 
units: 10 blocks by l0 families having 8 common blocks with 
the "adjacent" 10-block by 10-family unit, which has 8 
common blocks with its adjacent 10-block by 5-family unit, 
which has 4 common blocks with the following 10-block by 
10-family unit ... and the pattern repeats. 

U.20.100.1 An Unbalanced diagonal design with 20 blocks, 
100 families and single (1) tree plots. This is the diagonal 
design with a U (10) family size distribution. 

U.20.100.2 An Unbalanced diagonal design with 20 blocks, 
100 families and 2 tree plots. These are arranged as a series of 
balanced units having common blocks among "adjacent" 
units: 5 blocks by 10 families having 3 common blocks with 
the "adjacent" 5-block by 10-family unit, which itself has 3 
common blocks with its "adjacent" unit of 5 blocks by 5 fami- 
lies which then has 4 common blocks with the following 
5-block by 10-family unit ... and the pattern repeats 3 more 
times. 

For the two-tree plot designs, U.20.50.2 and U.20.100.2, 
a~ and or2 w are estimable separately. 

The criterion for comparing design allocations (family size 
distribution) is an efficiency ratio of the var(fi 2) from one 
design allocation (family size distribution) divided by that 
from another, for a given h 2 and family size distribution 
(design allocation). For balanced designs, the MML estimates 
are ANOVA estimates but not otherwise. The var(l] 2) for 
B.20.50.1 based on MIVQUE is the same as that based on the 
ANOVA procedure. 

Design efficiency profiles (Namkoong and Roberds 1974) 
are drawn to map the variance of the estimate of heritability 
(var(t]2)) for a particular design allocation-family size dis- 
tribution combination over the range of heritability. Thus, the 
efficiency of each design relative to a standard criterion can be 
compared for any range of heritabilities. One such criterion 
profile might simply be that based on a constant coefficient of 
variation (CV(fa 2) = ( v]/v~(fi2)/h 2) x 100%). Since very low 
heritabilities would require very high precision if such a 
criterion is adopted, Namkoong and Roberds (1974) suggest 
that a composite criterion be adopted, using a constant CV at 
moderate to high heritabilities and a constant standard error 
at low heritabilities. We compare our designs against a 
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var(h 2) profile based on a CV= 50% curve for h2=0.20 to 
1.0; while for 0 < h 2 - 0.20 we have drawn the profile based 
on std (la 2) = 0.10. 

Results and discussion 

The var(la 2) profile of  U.20.100.1, typical  o f  the form 
and  m agn i tude  found  wi th  o ther  des ign a l locat ions  and  
fami ly  size d is t r ibut ions ,  is shown in Fig. 3. The  stan- 
dard  curve allows us to readi ly  see that  the u n b a l a n c e d  
design has a var(la 2) which  is always less t han  the 
cr i ter ion suggested. 

C o m p a r i s o n  of  des ign al locat ions is based on effi- 
ciency ratios of  each of  the paral le l  and  un i fo rm  
designs to the d iagonal  des ign  for a g iven fami ly  size 
d i s t r ibu t ion  (B(30, 1/3)) at selected her i tabi l i t ies  
(Tab le  1). The general  pa t te rn  seen for the B(30,  1/3) 
d i s t r ibu t ion  is  found  with the other  d is t r ibut ions .  
There  is a consistent  dif ference of  small  m a g n i t u d e  
(less than  1%) a m o n g  designs across h 2. The  d iagona l  
des ign is the most  eff ic ient  at h igh her i tabi l i t ies  and  
the un i form,  the least. However,  at h2_- < 0.33, the 
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Fig. 3. Var(fi 2) profile for U.20.100.1 with ten trees per 
family, given ~ = 2, a~ = ~ and O-2w = 1 (broken line) com- 
pared with a standard criterion curve (solid line), which is 
based on a CV(la 2) = 50% for h2> 0.2 and on a std (I~ 2) = O.l 
for h 2 < 0.2 
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uniform design is the most efficient, and at h 2-< 0.26, 
the diagonal  al location is the least efficient. The dif- 
ference between the design allocations is the number  of  
families in the block by family units and the number  of  
common blocks among "adjacent"  units. For  the U (10) 
family distr ibution,  the diagonal  has units of  10 fami- 
lies having 8 blocks common among "adjacent" units, the 
parallel  has units o f  5 families with 9 blocks common,  
and the uniform has units of  50 without  common 
blocks among "adjacent"  units. Nei ther  the effect of  
the number  of  common blocks nor the number  of  
families in a unit corresponds with the efficiency 
rating. How these two factors influence var(ft  2) such 
that  we see a change in design efficiency at h 2 ~  1/3 is 

Table 1. Design efficiency ratios as affected by design alloca- 
tion. The ratio is of the var (fa 2) from each of the parallel and 
uniform designs to that from the diagonal design, illustrated 
using a B(30, 1/3) family size distribution, 0.~ = 2, 0.2 = 1 and 
0.2 = ~2 

o'~ (= 0 "2) h 2 Diagonal (D) Parallel (P) Uniform (U) 
vat (la 2 ) Ep a Eu b 

0.5 1.00 0.0219 1.00015 1.00185 
0.3 0.75 0.0176 1.00014 1.00142 
0.2 0.57 0.0142 1.00013 1.00092 
0.15 0.46 0.0120 1.00010 1.00047 
0.10 0.33 0.0095 1.00004 0.99979 
0.09 0.31 0.0089 1.00002 0.99962 
0.075 0.26 0.0080 0.99999 0.99932 
0.05 0.18 0.0066 0.99992 0.99869 
0.02 0.08 0.0047 0.99978 0.99765 
0.01 0.04 0.0040 0.99984 0.99731 
0.005 0.02 0.0037 0.99968 0.99694 

~ Ep is the var (la 2) from the parallel (P) design divided by the 
var (la 2) from the diagonal design 
b Eu is the var (fa 2) from the uniform (U) design divided by 
the var (f~2) from the diagonal design 

unclear. Swallow and Searle (1978) note that no one 
design allocation uniformly minimizes the variance of  
their  estimate. In all cases, however, the differences 
among designs are less than 1% and these allocations 
are essentially equivalent. Previous knowledge of  h 2 is 
not required to choose an efficient design allocation. 

The effects of  family size distr ibutions on magni-  
tude of  var (la 2) is shown in Table 2 for the diagonal  
design based on an efficiency ratio of  the var (fa 2) from 
a given dis tr ibut ion to that from the U(10)  distr ibu- 
tion. There is a larger magni tude  of  differences among 
designs as affected by family size distr ibutions (up to 
6%) than by design allocations. However,  these differ- 
ences are not very large. There is a consistent trend of  
var(la 2) with variance of  the family size dis t r ibut ion 
(equal to N p ( 1 -  p) for a b inomial  dis tr ibut ion)  for a 
given h 2. For  h 2 -  >_ 0.25 the U(10)  design is the most 
efficient and the designs with variance of  family size 
are less efficient. For  h2-<_0.21 the most variable 
family size design is the most efficient and the uni- 
formly 10 trees per family design is the least efficient. 
Similar  results are found for the other design alloca- 
tions; the most variable family size design is the most 
efficient at h 2 =< 0.18 for the uniform design. A variable 
family size dis tr ibut ion which is usually considered 
undesirable,  can be beneficial  for estimating h 2 when 
h 2 is in its lower range. 

In assessing design allocations and family size dis- 
t r ibut ion together, we find that the diagonal  design 
with U(10) distr ibution is the most efficient at high 
heri tabil i t ies and that the uniform design with 
B(40, 1/4) dis tr ibut ion is most efficient at low heri- 
tabilities. The magni tude of  these differences suggest 
that one design or dis t r ibut ion is essentially equivalent  
across the range of  h z. However,  the trend in the differ- 
ences suggests that creating a large family variance for 

Table 2. Design efficiency ratios as affected by family size distribution. The ratio is the var(1] 2) 
from each binomial distribution (B (N,p)) to that from the uniformly ten trees per family distribu- 
tion (U (10)), illustrated using the diagonal design with a 2 = 2, 0.2 = a2 and a2w = 1 

a-~(=a 2 ) h z U(10) B (15,2/3) B (20, 1/2) B (30, 1/3) B (40, 1/4) a 
var (fi2) El 5 b E20 E30 E40 

0.5 1.00 0.0215 1.010 1.015 1.020 1.022 
0.3 0.75 0.0173 1.011 1.016 1.021 1.023 
0.2 0.57 0.0139 1.010 1.015 1.020 1.021 
0.1 0.33 0.0094 1.006 1.009 1.011 .1.012 
0.07 0.25 0.0077 1.002 1.003 1.003 1.004 
0.06 0.21 0.0072 1.000 1.000 0.999 0.999 
0.05 0.18 0.0066 0.997 0.996 0.994 0.994 
0.02 0.08 0.0048 0.983 0.976 0.969 0.966 
0.005 0.02 0.0039 0.971 0.958 0.946 0.941 

a Distributions are arranged in increasing order of family size variance: 0, 3 1/3, 5, 6 2/3, 7 1/2 for the 
U (10), B (15, 2/3), B (20, 1/2), B (30, 1/3) and B (40, 1/4) distributions, respectively 
b EN is the var (la 2) from the B (N,p) design divided by the var(h 2) from the U (10) design 
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Table 3. Design efficiency ratios as affected by the block vari- 
ance component value. The ratio is of the var (la 2) based on 
each a 2= 0.5 and a 2= 4 to that based on a 2= 2, given the 
diagonal design with B (30, I/3) family size distribution and 
G2w = 1 

~ ( = ~ )  h 2 ~ =  2 a~=0.5 a ~ = 4  
var(fi 2) Eo.5a E4 b 

0.5 1.00 0.0219 0.9997 1.00006 
0.2 0.57 0.0142 0.9997 1.00007 
0.1 0.33 0.0095 0.9996 1.00007 
0.08 0.28 0.0083 0.9996 1.00006 
0.05 0.18 0.0066 0.9996 1.00007 
0.04 0.15 0.0059 0.9996 1.00007 
0.03 0.11 0.0053 0.9996 1.00007 
0.02 0.08 0.0047 0.9996 1.00007 

a E0.5 is the v a r  (1212) based 
based on a~ = 2 
b E4 is the var (fi2) based 
based on a~ = 2 

on ~r~ = 0.5 divided by the var (fi2) 

on cr~ = 4 divided by the var (~12) 

Table 4 a. Design efficiency ratios as affected by plot size. The 
ratio is of the var (la 2) based on a two-tree plot (TTP) design 
to that of a single-tree plot (STP) design for ~ = 2, av 2 = a~ 
and a2w = 1 

a 2 (= cr 2) h 2 Single- Two-tree plots 
tree plots var (h2)TTP 

var (h 2) ETTP var (h2)sTP 

Fifty families 0.5 1.00 0.0320 1.117 
each with 0.1 0.33 0.0096 1.100 
20 trees 0.05 0.18 0.0054 1.094 

0.005 0.02 0.0020 1.088 

Onehundred 0.5 1.00 0.0215 1.235 
families 0.1 0.33 0.0094 1.181 
each with 0.05 0.18 0.0066 1.168 
10 trees 0.005 0.02 0.0039 0.157 

Table 4 b. Design efficiency ratios as affected by the number 
of families. The ratio is of the var (la 2) from a 50-family design 
divided by that from a 100-family design, given a2=2,  
0 .2 = 0 .2 and a 2 = 1 

100 families 50 families 
var (h2)50 

var(fl 2) Eso var(l~2)loo 

Single-tree 0.5 1.00 0.0215 
plots 0.1 0.33 0.0094 

0.05 0.18 0.0066 
0.005 0.02 0.0039 

Two-tree 0.5 1.00 0.0265 
plots 0.1 0.33 0.0111 

0.05 0.18 0.0077 
0.005 0.02 0.0046 

1.487 
1.030 
0.825 
0.516 

1.344 
0.959 
0.773 
0.486 

est imating heri tabi l i t ies  can be very useful for esti- 
mat ing h 2 at its lower values. 

The effect of  the block variance component  value 
on var(la 2) can be seen in Table  3. The var(la z) in- 
creases with the magni tude  of  the block variance com- 
ponent. We have used azB = 2 throughout  the study and 
see that had we used a higher  or lower value, that  we 
would have shifted the var (la 2) profi le  higher  or  lower, 
ever so slightly. 

In the second part  of  this Study we have removed 
the constraint of  100 families with 10 trees apiece and 
single-tree plots (STP) to consider  the efficiency of  
designs with 50 families of  20 trees apiece and two-tree 
plots (TIP).  In Table 4a  the efficiency o f  T I P  designs is 
compared  with that of  STP designs for each 50 and 100 
families. For  a constant number  of  trees per  family,  it  
is always more efficient to put  out  STP designs than 
TTP designs, in par t icular  for high heri tabi l i t ies  and 
with 100 families. Differences in STP and TTP designs 
that may explain the results are that there are fewer 
combinat ions  of  blocks and families with TTP (500) in 
contrast to STP (1,000); also with 10 trees for each of  
100 families,  TTP designs reduce the number  o f  plots 
per  family down to 5 compared  to 10 with STP designs. 
Gaylor  and Anderson (1960) showed that  the variance 
of  " a  2'' term is min imized  with one observat ion per  
plot, based on the method  of  fitting constants. 

In general, it is clear that  a design with a greater  
number  of  small families is more efficient at high heri- 
tabil i t ies compared  to her i tabi l i t ies  general ly less than 
one third, where it is more efficient to have a design 
with fewer but  larger famil ies  (Table 4b) .  A design 
with few large families rather  than many  small fami-  
lies, in an A N O V A  sense is equivalent  to al locating a 
larger number  of  degrees of  f reedom to the 62 (and 
also 6 .2 in a design with STP) terms. For  small heri-  
tabili t ies,  these are the dominant  terms. This com- 
parison sheds light on the effect of  family size varia-  
tion. A high variance in family size indicates that  there 
are some families with more  offspring, some with 
respectively fewer. The response of  var iable  family 
size designs at low h 2 is asymmetr ic  with increased 
efficiency from the larger families outweighing the loss 
in efficiency from the smaller  families. At high heri- 
tabili t ies,  a design with a large number  of  small fami-  
lies is required to al locate sampl ing to the numera tor  
(4 ~ ) .  

The choice of  family number  for h 2 es t imat ion 
depends on whether  we consider  only a por t ion o f  the 
range of  h 2 or consider the entire range. The former 
case involves little diff iculty in choosing an appropr ia te  
design. The lat ter  case, however,  requires deeper  con- 
s iderat ion and is of  interest when there is a lack of  
pr ior  knowledge of  h 2 or when the her i tabi l i t ies  o f  
several traits, which may  occur at various points across 
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the range of h 2, are to be estimated simultaneously. 
This would require a design with a large number  of 
families to obtain low variance estimates of h 2 at high 
h 2 values as well as a large variance on the family size 
for heritabilities in the lower range. 

The two types of variance component  sets are 
evaluated by an efficiency ratio (Et, "t" for types) and 
are shown for the factorial arrangement of number  of 
families and plot size in Table 5. Efficiency ratios are 
also calculated for the design allocations and family 
size distributions mentioned earlier in this study. Their 
results are of the 100-family STP design type 
(U.20.100.1). Single-tree plot designs, regardless of the 
family size are generally insensitive to the magnitude 
of the different types of variance component  sets used 
in calculatiung a given h 2. Design recommendations 
can then be based on h e itself without requiring 
knowledge of the actual components. This situation is 
in contrast with TTP designs, and in general with 
multiple-tree plot designs, particularly at high heri- 
tabitities. Efficiency ratios for TTP designs show up 
to 16% difference between var(fi 2) based on the two 
variance component  set types, with the var (fi2) based 
on @ > a~ type being consistently less than that based 
on a~ = @ type. For the allocations examined here, we 
observe only changes in magnitude,  in contrast to that 
of ranking of the designs. Simplicity of design recom- 
mendat ion is obviously gained if decisions can be 
based upon h 2 itself rather than the magnitude of the 
variance components. In Table 6a the effect of a de- 
creased var(fi 2) for a~ > @ variance component set 
type with TTP designs compared with the @ > aZe type 
can be seen in ETTp. There is a decrease in the design 
efficiency ratios compared with the analogous ratios in 
Tab l e4a .  The var(fi 2) for the STP design remains 
essentially the same over variance component set types. 
The sensitivity of TTP designs to types is particularly 
noticed for the 100-family design. The 100-family 
design is more sensitive to the use of TTP compared to 
STP than the 50-family design (Table 4 a). 

In Table 6b,  the STP design information is the 
same as in Table 4b. The Errp ratios have increased 
compared with those in Table 4 b, reflecting the greater 
sensitivity of the 100-family design compared to the 
50-family design employing TTP. Each var(fi 2) de- 
creased; however, the var(fi 2) due to the 100-family 
design decreased more than that with the 50-family 
design. 

A natural extension of this research is to examine the 
robustness of designs to unplanned loss, as is typical of peren- 
nial crops and to consider alternative block size and numbers. 
Of particular interest will be the robustness of a family size 
distribution with high variance of family size. The calcula- 
tions we made lead us to suspect that by increasing the vari- 
ance of family size even higher, we might be able to get lower 
var(fi 2) at low h 2 than that with a lower variance of family 

Table 5. Efficiency ratios (Et) equal to the var(fi 2) based on 
2_ 2 given o -2 > a 2= 0.005 divided by that based on O-F--o-P, 

a 2 = 2, o-2 = 1 and a diagonal design allocation for the un- 
balanced designs 

h 2 Single-tree Two-tree 
plots plots 

Fifty families each 1 .00 1.00000 a 0.90781 b 
with 20 trees 0 . 3 3  0 . 9 9 9 9 6  0.93814 

0 . 1 8  1 . 0 0 0 0 5  0.95594 

One hundred families 1 .00  1.00004 ~ 0.83764 d 
each with 10 trees 0 .33  0 . 9 9 9 9 9  0.90836 

0 . 1 8  1 . 0 0 0 0 3  0.94147 

a This design information is based on B.20.50.1 
b This design information is based on U.20.50.2 
c This design information is based on U.20.100.1 
0 This design information is based on U.20.100.2 

Table 6a. Design efficiency ratios as affected by plot size. The 
ratio is of the var (fi2) based on a two-tree plot (TTP) design 
to that of a single-tree plot (STP) design for o-2 = 2, o-~ = 0.005 
and o-2w = 1 

ty 2 h 2 Single- Two-tree plots 
tree plots var  (I~2)TTP 
var(fi2) ETTP var(fi2)STp 

Fifty families 0.335 1.00 0 .0320  1.014 
each with 0.091 0.33 0 .0096  1.032 
20 trees 0.048 0.18 0 .0054  1.046 

0.005 0.02 0 .0020  1.088 

One hundred 0.335 1.00 0 .0215  1.035 
families 0.091 0.33 0 .0094  1.073 
each with 0.048 0.18 0 .0066  1.099 
10 trees 0.005 0.02 0 .0039  1.157 

Table6b. Design efficiency ratios as affected by the number 
of families. The ratio is of the var (fi2) from a 50-family design 
to that from a 100-family design, given a 2 = 2, o-~ = 0.005 and 
o -2= 1 

a~ h 2 100 families 50 families 
var (fi2) 50 

var (fi2) Es~ - var (fi2)loo 

Single-tree 0.335 1.00 0.0215 1.487 
plots 0.091 0.33 0.0094 1.030 

0.048 0.18 0.0066 0.825 
0.005 0.02 0.0039 0.516 

Two-tree 0.335 1.00 0.0222 1.457 
plots 0.091 0.33 0.0100 0.991 

0.048 0.18 0.0072 0.785 
0.005 0.02 0.0045 0.486 
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size. However, in a design with high variance of family size, 
loss of trees may begin to reduce the number of families since 
there will be some families with only a few trees. 

Conclusions 

We have considered an est imation si tuat ion where the 
total number  of  observations is 1,000, and the number  
of  blocks is restricted to 20, each of  size 50 trees em- 
ploying single-tree plots (STP). The object ive is to esti- 
mate heri tabil i ty.  One hundred families of  average size 
10 are al located to these blocks. Given  these small 
blocks, we can design efficient h 2 e s t ima t i on  experi-  
ments. We find that the tested patterns of  al locating 
families to blocks is inconsequential .  Little difference, 
as measured by efficiency ratios of  the variance of  the 
est imate of  heri tabil i ty,  exists among patterns of  family 
associations in and across blocks. We considered de- 
signs having variance in family size and found a small 
but  consistent trend. Equal size family designs are most 
efficient at high heritabil i t ies.  A design with a large 
family size variance (our largest is 71/2) is most efficient 
at low heritabil i t ies.  

Relaxing the constraint  of  100 families and STP, we 
find that STP designs are more efficient than two-tree 
plots (TTP) designs across the range of  h 2, regardless of  
the number  of  families. Single-tree plot designs are 
generally insensitive to the variance component  set 
type used for calculating var (fi2) at a given h 2, whereas 
TTP designs are sensitive to the type used. The number  
and size of  families is influential  on design efficiency. 
In general, a design with a large number  of  small 
families is desirable for high heritabil i t ies,  whereas a 
design with fewer families of  larger size is more effi- 
cient at lower heri tabil i t ies.  

The design of  an experiment  to est imate h 2 is sensi- 
tive to the number  and size of  families,  the variance of  
family size and the plot size. These results substantiate 
similar work by Haile and  Webster  (1975), who exam- 
ined unbalanced block designs for est imating a row 
variance component  (in a two-way classified design) 
and concluded that the choice of  design is of  minor  
importance.  The correct choice of  the number  of  levels 
for the effects, given a par t icular  magni tude  of  the 
components,  is where gain, in terms of  reducing the 
variance of  the estimator,  can be made.  Based on the 
allocations s tudied and 100% survival of  trees, we 
recommend designs with STP to gain stabil i ty over 
variance component  set types as well as efficiency, and 
the considerat ion of  a large number  of  families with a 
high family size variance to provide  efficient esti- 
mators of  h 2 across its range. 

The cri ter ion for efficiency ratios has been var (la2), 
where h 2 is based on individual  performance.  De- 

pending upon the mat ing and exper imental  designs 
employed,  cri teria other than h 2 might  be preferred. 
Fo r  example,  in a breeding program util izing family 
selection, the her i tabi l i ty  der ived with family means 
(h~) is a more appropr ia te  cri terion than h 2. Design 
comparisons based on var(l~ 2) can be made,  in an 
analysis analogous to ours, where h 2 = aZF/a 2 (a~ being 
the phenotypic  variance among family means). 
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